Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Appl Microbiol ; 132(3): 2421-2430, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1488216

ABSTRACT

AIMS: COVID-19 pandemic caused by SARS-CoV-2 has become a public health crisis worldwide. In this study, we aimed at demonstrating the neutralizing potential of the IgY produced after immunizing chicken with a recombinant SARS-CoV-2 spike protein S1 subunit. METHODS AND RESULTS: E. coli BL21 carrying plasmid pET28a-S1 was induced with IPTG for the expression of SARS-CoV-2 S1 protein. The recombinant His-tagged S1 was purified and verified by SDS-PAGE, Western blot and biolayer interferometry (BLI) assay. Then S1 protein emulsified with Freund's adjuvant was used to immunize layer chickens. Specific IgY against S1 (S1-IgY) produced from egg yolks of these chickens exhibited a high titer (1:25,600) and a strong binding affinity to S1 (KD  = 318 nmol L-1 ). The neutralizing ability of S1-IgY was quantified by a SARS-CoV-2 pseudotyped virus-based neutralization assay with an IC50  value of 0.99 mg ml-1 . In addition, S1-IgY exhibited a strong ability in blocking the binding of SARS-CoV-2 S1 to hACE2, and it could partially compete with hACE2 for the binding sites on S1 by BLI assays. CONCLUSIONS: We demonstrated here that after immunization of chickens with our recombinant S1 protein, IgY neutralizing antibodies were generated against the SARS-CoV-2 spike protein S1 subunit; therefore, showing the potential use of IgY to block the entry of this virus. SIGNIFICANCE AND IMPACT OF THE STUDY: IgY targeting S1 subunit of SARS-CoV-2 could be a promising candidate for pre- and post-exposure prophylaxis or treatment of COVID-19. Administration of IgY-based oral preparation, oral or nasal spray may have profound implications for blocking SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/pharmacology , Immunoglobulins/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Virus Internalization/drug effects , Animals , COVID-19 , Chickens , Egg Yolk/immunology , Humans , Pandemics
2.
BMC Microbiol ; 21(1): 277, 2021 10 11.
Article in English | MEDLINE | ID: covidwho-1463230

ABSTRACT

BACKGROUND: Fusobacterium nucleatum (F. n) is an important opportunistic pathogen causing oral and gastrointestinal disease. Faecalibacterium prausnitzii (F. p) is a next-generation probiotic and could serve as a biomarker of gut eubiosis/dysbiosis to some extent. Alterations in the human oral and gut microbiomes are associated with viral respiratory infection. The aim of this study was to characterise the oral and fecal bacterial biomarker (i.e., F. n and F. p) in COVID-19 patients by qPCR and investigate the pharyngeal microbiome of COVID-19 patients through metagenomic next-generation sequencing (mNGS). RESULTS: Pharyngeal F. n was significantly increased in COVID-19 patients, and it was higher in male than female patients. Increased abundance of pharyngeal F. n was associated with a higher risk of a positive SARS-CoV-2 test (adjusted OR = 1.32, 95% CI = 1.06 ~ 1.65, P < 0.05). A classifier to distinguish COVID-19 patients from the healthy controls based on the pharyngeal F. n was constructed and achieved an area under the curve (AUC) of 0.843 (95% CI = 0.688 ~ 0.940, P < 0.001). However, the level of fecal F. n and fecal F. p remained unaltered between groups. Besides, mNGS showed that the pharyngeal swabs of COVID-19 patients were dominated by opportunistic pathogens. CONCLUSIONS: Pharyngeal but not fecal F. n was significantly increased in COVID-19 patients, clinicians should pay careful attention to potential coinfection. Pharyngeal F. n may serve as a promising candidate indicator for COVID-19.


Subject(s)
COVID-19/microbiology , Feces/microbiology , Fusobacterium Infections/microbiology , Fusobacterium nucleatum/genetics , Pharynx/microbiology , Adult , Biomarkers/analysis , COVID-19/virology , Carrier State/microbiology , Coinfection/microbiology , Coinfection/virology , Dysbiosis , Female , Fusobacterium Infections/virology , High-Throughput Nucleotide Sequencing , Humans , Male , Metagenomics , Microbiota , Middle Aged , Pharynx/virology , Sex Factors
3.
Int Immunopharmacol ; 96: 107797, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1300822

ABSTRACT

Specific antibodies against SARS-CoV-2 structural protein have a wide range of effects in the diagnose, prevention and treatment of the COVID-19 epidemic. Among them, egg yolk immunoglobulin Y (IgY), which has high safety, high yield, and without inducing antibody-dependent enhancement, is an important biological candidate. In this study, specific IgY against the conservative nucleocapsid protein (NP) of SARS-CoV-2 was obtained by immunizing hens. Through a series of optimized precipitation and ultrafiltration extraction schemes, its purity was increased to 98%. The hyperimmune IgY against NP (N-IgY) at a titer of 1:50,000 showed strong NP binding ability, which laid the foundation of N-IgY's application targeting NP. In an in vitro immunoregulatory study, N-IgY (1 mg/mL) modulated NP-induced immune response by alleviating type II interferon secretion stimulated by NP (20 µg/mL). In summary, N-IgY can be mass produced by achievable method, which endows it with potential value against the current COVID-19 pandemic.


Subject(s)
Antibodies/immunology , Antiviral Agents/immunology , COVID-19/immunology , Immunoglobulins/immunology , Immunologic Factors/immunology , Interferon-gamma/metabolism , SARS-CoV-2/immunology , Animals , Antibodies/pharmacology , Antiviral Agents/pharmacology , COVID-19/therapy , Chickens , Drug Development , Egg Yolk/chemistry , Egg Yolk/metabolism , Humans , Immunity , Immunoglobulins/pharmacology , Immunologic Factors/pharmacology , Immunomodulation , In Vitro Techniques , Nucleocapsid Proteins/immunology , Nucleocapsid Proteins/metabolism , SARS-CoV-2/metabolism
4.
BMC Microbiol ; 21(1): 56, 2021 02 19.
Article in English | MEDLINE | ID: covidwho-1090700

ABSTRACT

BACKGROUND: Gastrointestinal symptoms are common in COVID-19 patients and SARS-CoV-2 RNA has been detected in the patients' feces, which could lead to fecal-oral transmission. Therefore, fecal sample testing with real-time RT-PCR is highly recommended as a routine test for SARS-CoV-2 infection. However, varying rates of detection in fecal sample have been reported. The aim of this study was to provide insights into the detection rates of SARS-CoV-2 in COVID-19 patients' fecal sample by using four real-time RT-PCR kits and two pretreatment methods (inactive and non-inactive). RESULTS: The detection rate of Trizol pretreatment group was slightly higher than that of Phosphate Buffered Saline (PBS) groups, showing that pretreatment and inactivation by Trizol had no influence to SARS-CoV-2 nucleic acid test (NAT) results. 39.29% detection rate in fecal sample by DAAN was obtained, while Bio-germ was 40.48%, Sansure 34.52%, and GeneoDx 33.33%. The former three kits had no significant difference. The DAAN kit detection rates of ORF1ab and N gene were nearly equal and Ct value distribution was more scattered, while the Bio-germ kit distribution was more clustered. The positive rate of SARS-COV-2 in fecal samples correlated with the severity of the disease, specifically, severe cases were less likely to be identified than asymptomatic infection in the DAAN group (adjusted OR 0.05, 95%CI = 0.00 ~ 0.91). CONCLUSIONS: Trizol should be of choice as a valid and safe method for pretreatment of fecal samples of SARS-CoV-2. All real-time RT-PCR kits assessed in this study can be used for routine detection of SARS-CoV-2 in fecal samples. While DAAN, with high NAT positive rate, could be the best out of the 4 kits used in this study. SARS-CoV-2 positive rate in fecal sample was related to the severity of illness.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Feces/microbiology , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/pathogenicity , Adult , Female , Humans , Male , Middle Aged , Open Reading Frames/genetics , RNA, Viral/genetics , SARS-CoV-2/isolation & purification
5.
Front Microbiol ; 11: 1840, 2020.
Article in English | MEDLINE | ID: covidwho-727383

ABSTRACT

The new coronavirus SARS-CoV-2, the cause of COVID-19, has become a public health emergency of global concern. Like the SARS and influenza pandemics, there have been a large number of cases coinfected with other viruses, fungi, and bacteria, some of which originate from the oral cavity. Capnocytophaga, Veillonella, and other oral opportunistic pathogens were found in the BALF of the COVID-19 patients by mNGS. Risk factors such as poor oral hygiene, cough, increased inhalation under normal or abnormal conditions, and mechanical ventilation provide a pathway for oral microorganisms to enter the lower respiratory tract and thus cause respiratory disease. Lung hypoxia, typical symptoms of COVID-19, would favor the growth of anaerobes and facultative anaerobes originating from the oral microbiota. SARS-CoV-2 may aggravate lung disease by interacting with the lung or oral microbiota via mechanisms involving changes in cytokines, T cell responses, and the effects of host conditions such as aging and the oral microbiome changes due to systemic diseases. Because the oral microbiome is closely associated with SARS-CoV-2 co-infections in the lungs, effective oral health care measures are necessary to reduce these infections, especially in severe COVID-19 patients. We hope this review will draw attention from both the scientific and clinical communities on the role of the oral microbiome in the current global pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL